Ignition Experiments by Shock Waves
نویسندگان
چکیده
منابع مشابه
Ignition of Aluminum Particle Clouds Behind Reflected Shock Waves
Extending on a companion paper in this colloquium, the dispersion, ignition and combustion characteristics of aluminum particle clouds is investigated numerically behind reflected shock waves. It is observed that a higher proportion of the Al cloud by mass burns for a higher initial cloud concentration. Vorticity from the cloud wake and from that deposited by the reflected shock cause the parti...
متن کاملSymmetry of spherically converging shock waves through reflection, relating to the shock ignition fusion energy scheme.
We examine the properties of perturbed spherically imploding shock waves in an ideal fluid through the collapse, bounce, and development into an outgoing shock wave. We find broad conservation of the size and shape of ingoing and outgoing perturbations when viewed at the same radius. The outgoing shock recovers the velocity of the unperturbed shock outside the strongly distorted core. The resul...
متن کاملSpherical Strong-Shock generation for Shock-ignition inertial fuSion
LLE Review, Volume 141 48 Introduction Shock ignition (SI)1–5 is an advanced concept in inertial confinement fusion (ICF)6 that is very promising and has the potential to provide significantly higher gains than conventional hot-spot ignition.7 SI is a two-step process where the fuel compression and ignition phases are separated by applying a highly shaped laser pulse with a duration of several ...
متن کاملShock Waves
Shock wave theory was first studied for gas dynamics, for which shocks appear as compression waves. A shock wave is characterized as a sharp transition, even discontinuity in the flow. In fact, shocks appear in many different physical situation and represent strong nonlinearity of the physical processes. Important progresses have been made on shock wave theory in recent years. We will survey th...
متن کاملExtracorporeal shock waves act by shock wave-gas bubble interaction.
The effect of extracorporeal shock waves on hemoglobin release from red blood cells was recently found to be minimized under minute static excess pressure. It was proposed that this can be explained by shock wave-gas bubble interaction. We substantiated this further by two experiments by applying shock waves to suspended human RBC in a lithotripter at a lower frequency (1 pulse every 5 s) and b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mining and Metallurgical Institute of Japan
سال: 1985
ISSN: 0369-4194,2185-6729
DOI: 10.2473/shigentosozai1953.101.1164_55